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Abstract: In this paper, we introduce the notion of new kind of subgroup called S-fuzzy right R-subgroup 

using S-norm, and investigate some related properties. Finally, suproidempotent property of S-norm over 

near-ring is also discussed. 
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Section-1 Introduction:Basic concept of fuzzy sets and its operation is first defined by Zadeh [7]. 

S.Abou-zoid [4] introduced the concept of a fuzzy sub near-ring and explained fuzzy left (resp., right) 

ideals of a near-ring. K.H.Kim [5] discussed the properties of .fuzzy R-subgroups in near-rings. M.T.Abu 

Osman [3] investigated on some product of fuzzy subgroups.Also, S.Abou-zoid[4]introduced the concept 

of fuzzy ideals of  a ring, and many authors are discussed in extension of the near-rings.Generalised 

product of subgroups and t- level subgroups discussed by [1].Various kind of invariant fuzzy subgroups 

and ideals investigated by Liu [6].In this paper, we introduce the notion of new kind of subgroup called S-

fuzzy right R-subgroup using S-norm, and investigate some related properties. Finally, suproidempotent 

property of S-norm over near-ring is also discussed. 

Section-2 Preliminaries 

In this section, we include some elementary aspects that are necessary for this paper. 

By a near-ring ,we mean a non-empty set R with two binary operations „Addition‟ and ‘Multiplication’ 

satisfying the following conditions; 

(NR-1) : (R, + ) is a group. 

(NR-2) (R , • ) is a semi group. 

(NR-3) a • (b + c) = a • b + a • c (left distributive) and  

             (a + b) • c = a • c + b • c (right distributive) for all a,b,c ԑ R. 
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Precisely speaking, it is a right near-ring because it satisfies the right distributive law.we will use the 

word “near-ring” instead of “right near-ring”. We denote xy instead of x • y. Note that 0x =0 and (-y)x = -

(xy) but in general 0x ≠ 0 for some x ԑ R.  

A two sided R-subgroup  of a near-ring R is a subset H of R such that 

(i) (H , + ) is a subgroup of (R, +). 

(ii) RH is a subset of H. 

(iii) HR is a subset of H. 

If H satisfies (i) and (iii) , then it is called a right R-subgroup of R. 

Definition 2.1: A fuzzy set A in a set R is a function A : R→ [0,1]. 

Example 2.2:Let X ={a,b,c} be a non-empty set. A fuzzy set A is defined by  

1.1 X 1.2 a 1.3 b 1.4 c 

1.5 Membership 

value 

1.6 0.9 1.7 0.3 1.8 0.1 

 

Definition 2.3: Let (R, +, •) be a near-ring. A fuzzy set A in R is called a fuzzy right R-subgroup of R if  

(i) A is a fuzzy subgroup of ( R, +). 

(ii) A(xr)
m
 ≥ A(x

m
) for all x,r m ԑ R. 

Definition 2.4: By a s-norm S, we mean a function S : [0,1] ˟ [0,1] → [0,1] satisfying the following 

conditions; 

(S1) S(x, y) = S(y, x) 

(S2) S(x,z) < S(y ,z) , if x < z 

(S3) S(x, S(y, z)) = S(S (x,y ), z ) 

(S4)S(0 ,x) = x for all x ∊ [ 0,1]. 

For a s-norm S on [0,1], denoted by Δs the set of all element α ԑ [0,1] such that S(α , α ) = α. That is Δs = 

{ α ԑ [0,1] / S(α , α ) = α }. 

Proposition 2.5: Every s-norm S have a useful property; S(α , β ) ≥ max { α , β } for all α , β ԑ [0,1]. 
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Throughout  this paper, all standard proofs are going to proceed the only right cases, because the right 

cases are obtained from similar rule.  

In what follows, the term “fuzzy R-subgroup” means “fuzzy right R-subgroup” (“S-fuzzy R-subgroup”) 

respectively. 

Definition 2.6: A function A : R → [0,1] is called a S-fuzzy right R-subgroup of R with respect to s-norm 

S (briefly, a S-fuzzy right R-subgroup of R) if 

(i) A(x-y)
m
 ≤ S (A(x

m
), A(y

m
)) 

(ii) A(xr)
m
 ≤ A(x

m
) for all x,r,m ԑ R. 

It is easy to show that every fuzzy right R-subgroup is a S-fuzzy right R-subgroup of R with  S (α ,β ) 

= α ˅ β  for  each α , β ԑ [0,1]. 

 

Example 2.7: Let R = {1,2,3,4} be a set with addition and multiplication as follows 

1.9 + 1.10 1 1.11 2 1.12 3 1.13 4 

1.14 1 1.15 1 1.16 2 1.17 3 1.18 4 

1.19 2 1.20 2 1.21 1 1.22 4 1.23 3 

1.24 3 1.25 3 1.26 4 1.27 2 1.28 1 

1.29 4 1.30 4 1.31 3 1.32 1 1.33 2 
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1.34 • 1.35 1 1.36 2 1.37 3 1.38 4 

1.39 1 1.40 1 1.41 1 1.42 1 1.43 1 

1.44 2 1.45 1 1.46 1 1.47 1 1.48 1 

1.49 3 1.50 1 1.51 1 1.52 1 1.53 2 

 

We define fuzzy subset A: R → [0,1]  by A(3) = A(4) > A(2) > A(1).  Then A is called S-fuzzy right R-

subgroup of a near-ring R. 

Definition 2.8: Let S be a s-norm. A fuzzy set A in R is said to fulfil supro idempotent property if Im (A) 

⊇Δs. 

Section -3: STRUCTURES OF S-FUZZY RIGHT R-SUBGROUP OF NEAR-RING 

Proposition-3.1: Let S be a s-norm on [0,1]. If A is idempotent S-fuzzy right R-subgroup of R, then we 

have A(0
m
) ≤ A(x

m
) for all x ∊ R. 

Proof:For  every x ∊ R, we have  

A(0
m
) = A(x-x)

m
 ≤ S (A(x

m
), A(x

m
)) = A(x

m
). This completes the proof. 

Proposition-3.2: Let S be a s-norm on [0,1]. If A is an idempotent S-fuzzy right R-subgroup of R, then 

the set A = { x∊ R / A(x
m
) ≤ A(Ω

m
) is an R-subgroup of a near-ring R. 

Proof: Let x,y∊A
Ω
.Then A(x

m
) ≤ A(Ω

m
) and  A(y

m
) ≤ A(Ω

m
). Since A is an idempotent S-fuzzy right R-

subgroup of R, it follows that  

A(x-x)
m
 ≤ S (A(x

m
), A(y

m
)) ≤ S(A(x

m
) , A(Ω

m
)) ≤ S( A(Ω

m
) A(Ω

m
)) = A(Ω

m
). 

Now let r ∊ R, x ∊ AΩ.Then A(xr)
m
 ≤ A(x

m
) ≤ A(Ω

m
) and A(xr)

m
 ≤ A(Ω

m
), that is                x-y ∊A

Ω 

and xr∊ A
Ω
. The proof is completed. 

Corrollary-3.3: Let S be a s-norm. If A is an idempotent S-fuzzy right R-subgroup of R, then the set AR 

= {x ∊ R / A(x
m
) = A(0

m
)} is an R-subgroup of a near-ring R. 

Proof: From the proposition-1, AR = {x ∊ R / A(x
m

) = A(0
m
)} = {x ∊ R / A(x

m
) = A(0

m
)}, hence AR is 

an R-subgroup of a near-ring R from proposition-2. 
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Let ΦI denoted the characteristic function of a non-empty subset I of a near-ring R. 

Theorem-3.4: Let R ⊆ I. Then I is an R-subgroup of a near-ring if and only if ΦI is a S-fuzzy right R-

subgroup of a near-ring R. 

Proof: Let I be an R-subgroup of R. Then it is easy to show that ΦI is an S-fuzzy right R-subgroup of R. 

In fact, let x,y ∊ I and r ∊ R. 

Then x-y ∊ I and xr∊I.Hence 

ΦI(x-y)
m
 = 1 = S(ΦI(x

m
), ΦI(y

m
)) and  

ΦI(xr)
m
 ≤ ΦI(x

m
) = 1. 

If  x∊ I, y ∉ I, then we have ΦI(x
m
) = 1 or ΦI(y

m
). This means that 

ΦI(x-y )
m
 ≤ S(ΦI(x

m
) , ΦI(y

m
)) = 0 and ΦI(xr)

m
 ≤ ΦI(x

m
) = 0. 

Conversly, suppose that ΦI is a S-fuzzy right R-subgroup of R.  

Now let x,y∊ I. 

Then ΦI(x-y )
m
 ≤ S(ΦI(x

m
) , ΦI(y

m
)) = 1 and ΦI(xr)

m
 ≤ ΦI(x

m
) = , that is x-y ∊ I. 

Let r ∊ R, x ∊ I. Then ΦI(xr)
m
 ≤ ΦI(x

m
) = 1, and xr∊ I. The proof is completed. 

Lemma 3.5: Let S be a s-norm. Then S(S(p ,q ), S( , β )) = S(S(p ,) , S(q ,β)) , for all p,q, ,β ∊ [0,1]. 

Proposition 3.6: If A: R → [0,1] and B:R → [0,1] are S-fuzzy right R-subgroups of a near-ring R.Then 

A⋂B : R → [0,1] defined by (A⋂ B)(x) = S(A(x), A(y)) for all x ∊ R is an S-fuzzy right R-subgroup of a 

near-ring R. 

Proof: Let x,y∊ R and r ∊ R.Then we have  

(A⋂B)(x-y)
m
 = S(A(x-y)

m
, B(x-y)

m
) 

  ≤ S ( S(A(x
m
), A(y

m
)), B(x

m
), B(y

m
))) 

 = S(S (A(x
m
), B(x

m
)), S(A(y

m
), B(y

m
))) 

= S((A⋂B)(x
m

), (A⋂B)(y
m
)) 

And  

(A⋂B)(xr)
m
= S (A(xr)

m
, B(xr)

m
) 

 ≤ S(A(x
m
), B(x

m
)) 

=  (A⋂B)(x
m
). 
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This completes the proof. 

Definition 3.7: A fuzzy right R-subgroup A of a near-ring is said to be normal if A(0) = 1. 

Definition 3.8: Let A be a fuzzy subset of a set R, S  a s-norm and ∊ [0,1]. Then we define a S-level 

subset of a fuzzy subset A as  

A
S
 = {x ∊ R / S(A(x

m
),  ) ≤  }. 

Theorem 3.9: Let R be a near-ring and Aa fuzzy right R-subgroup of R.Then S-level subset A
S
  is an R-

subgroup of R where S(A(0),  ) ≤  for ∊ [0,1]. 

Proof: A
S
 = {x ∊ R / S(A(x

m
),  ) ≤  } is clearly non-empty. 

Let x,y∊ A
S
 

Then we have  

S(A(x
m
),  ) ≤  and S(A(y

m
),  ) ≤ . Since A is a S-fuzzy right R-subgroup of R, 

S(A(x-y)
m
,   ) ≤ S (S(A(x

m
), A(y

m
)),  ) 

  = S (A(x
m

), S (A(y
m
), ) ) 

≤ S(A(x
m
),  ) ≤ . 

Hence x-y ∊ A
S
. 

Now let r ∊ R and x ∊ A
S
.  Then we have 

S(A(x
m
),  ) ≤ . Since A is a S-fuzzy right R-subgroup of R, we have  

A(xr)
m
 ≤ A(x

m
). And so  

S(A(xr)
m
,  ) ≤ S(A(x

m
),  ) ≤ . This means that xr∊ A

S
. 

Therefore A
S
   is a R-subgroup of R. 

Conclusion: Based on the definition of S-fuzzy right R-subgroup of R, we can generate this idea with 

minimum operations in a near-rings. This will very applicable in the field of  computer design and 

automation.  This concept will be very useful for further research work. 
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